The GnRH receptor and the response of gonadotrope cells to GnRH pulse frequency code. A story of an atypical adaptation of cell function relying on a lack of receptor homologous desensitization.
نویسندگان
چکیده
Brain control of the reproductive system is mediated through hypothalamic gonadotropin-releasing hormone (GnRH) which activates specific receptors (GnRHR) present at the surface of the pituitary gonadotropes to trigger secretion of the two gonadotropins LH and FSH. A unique feature of this system is the high dependence on the secretion mode of GnRH, which is basically pulsatile but undergoes considerable fluctuations in pulse frequency pattern in response to endogenous or external factors. How the physiological fluctuations of GnRH secretion that orchestrate normal reproduction are decoded by the gonadotrope cell machinery to ultimately control gonadotropin release and/or subunit gene transcription has been the subject of intensive studies during the past decades. Surprisingly, the mammalian GnRHR is unique among G protein-coupled receptor family as it lacks the carboxy-terminal tail usually involved in classical endocytotic process. Accordingly, it does not desensitize properly and internalizes very poorly. Both this atypical intrinsic property and post-receptor events may thus contribute to decode the GnRH signal. This includes the participation of a network of signaling pathways that differently respond to GnRH together with a growing amount of genes differentially sensitive to pulse frequency. Among these are two pairs of genes, the transcription factors EGR-1 and NAB, and the regulatory factors activin and follistatin, that function as intracellular autoregulatory feedback loops controlling respectively LHbeta and FSHbeta gene expression and hence, LH and FSH synthesis. Pituitary gonadotropes thus represent a unique model of cells functionally adapted to respond to a considerably fluctuating neuroendocrine stimulation, from short individual pulses to sustained GnRH as observed at the proestrus of ovarian cycle. Altogether, the data emphasize the adaptative reciprocal complementarity of hypothalamic GnRH neurones and pituitary gonadotropes to function as an original unit.
منابع مشابه
Decoding high Gonadotropin-releasing hormone pulsatility: a role for GnRH receptor coupling to the cAMP pathway?
The gonadotropin-releasing hormone (GnRH) pulsatile pattern is critical for appropriate regulation of gonadotrope activity but only little is known about the signaling mechanisms by which gonadotrope cells decode such pulsatile pattern. Here, we review recent lines of evidence showing that the GnRH receptor (GnRH-R) activates the cyclic AMP (cAMP) pathway in gonadotrope cells, thus ending a lon...
متن کاملStructures, Functions and Expressions of GnRH and GnRH Receptor in Peripheral Reproductive Organs and Their Regulation by Estradiol-17β
Studies have shown that estradiol-17β (E2) regulates gonadotropin-releasing hormone (GnRH) and GnRH receptor expression in hypothalamus and pituitary. Several studies have shown that GnRH and its receptor are also expressed in peripheral reproductive organs and little is known about their regulations. In this study, GnRH and GnRH receptor structures, functions, their peripheral expressions and ...
متن کاملActivation of translation in pituitary gonadotrope cells by gonadotropin-releasing hormone.
The neuropeptide GnRH is a central regulator of mammalian reproductive function produced by a dispersed population of hypothalamic neurosecretory neurons. The principal action of GnRH is to regulate release of the gonadotropins, LH and FSH, by the gonadotrope cells of the anterior pituitary. Using a cultured cell model of mouse pituitary gonadotrope cells, alphaT3-1 cells, we present evidence t...
متن کاملSteroid-independent activation of ER by GnRH in gonadotrope pituitary cells.
In the rat pituitary gland the mechanism responsible for ERalpha regulation has not been fully elucidated. Using transient transfection assays in alphaT3-1 cells, a cell line of gonadotrope origin, we show that GnRH stimulates estrogen response element-containing promoters in an estrogen-independent manner. This effect was strictly ER and GnRH receptor dependent, as no activation of the reporte...
متن کاملGonadotropin-Releasing Hormone Regulation of Gonadotropin Subunit Gene Expression in Female Rats: Actions on Follicle-Stimulating Hormone b Messenger Ribonucleic Acid (mRNA) Involve Differential Expression of Pituitary Activin (b-B) and Follistatin mRNAs*
GnRH is the primary stimulus in the regulation of gonadotropin subunit mRNA expression. Additionally, local (pituitary) production of activin and follistatin appear to modulate the expression of FSH b mRNA. The current studies aimed to determine whether GnRH regulation of pituitary activin (b-B) and follistatin mRNAs could play a role in the differential actions of GnRH pulse pattern on gonadot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Folia histochemica et cytobiologica
دوره 47 5 شماره
صفحات -
تاریخ انتشار 2009